Intro
들어가며
시장 데이터 전문 기업 스태티스타(Statista)는 2025년 세계 디지털 헬스케어 시장이 약 6,570억 달러 규모로 성장할 것으로 예측했다. 2019년 약 1,750억 달러, 올해 2,680억 달러를 거쳐 연평균 성장률(CAGR)이 25%에 이르는 높은 성장을 지속할 것이라는 전망이다.
[2019~2025년 세계 디지털헬스 시장 예상 규모(스태티스타)]
또, 스태티스타는 헬스케어 가운데 인공지능이 차지하는 시장 규모가 2025년에 약 280억 달러에 이를 것으로 예측했다. 헬스케어 인공지능 시장 규모는 2016년 약 11억 달러, 2017년 약 14억 달러였던 것에 비해 매우 많이 증가한 것이다. 2017년 시장 규모를 기준으로 2025년까지의 연평균 성장률(CAGR)이 약 45%에 이를 정도로 전체 시장에 비해서도 매우 빠르게 성장하는 시장임을 알 수 있다.
Application of image-based AI
영상 진단 중심의 이미지 기반 인공지능 적용
현재 헬스케어에서 활발하게 인공지능이 적용되고 사례도 많이 알려진 분야가 이미지 인식을 중심으로 한 진단 분야이다. 이는 현재의 인공지능 시대를 이끈 머신러닝/딥러닝 기술의 발달과 그 궤적을 함께 한다. 잘 알려진 바와 같이 머신러닝 기술의 부흥은 앤드류 응 교수가 머신러닝 기술로 고양이 이미지를 식별하는데, 성공한 2012년 구글 브레인 프로젝트와 논문에서 시작된다. 이후 인공지능을 적용한 혁신 사례들이 등장하기 시작했는데 응 교수의 논문을 포함해 많은 경우 이미지 인식과 관련이 있다. 이는 기술적으로 머신러닝 기술이 이미지 분석에 강점이 있었기 때문인데, 헬스케어 분야도 이미지 인식과 진단에서 괄목할 성과들이 나오는 것도 같은 맥락에서 이해할 수 있다.
임상 현장에서 영상 진단은 X-레이, CT, MRI, 초음파 등의 기기를 통해 습득한 영상 정보를 판도하는 방식으로 이뤄진다. 이들 영상은 비침습적 방법으로 신체 상태, 질병 유무에 대한 정보를 효과적으로 습득할 수 있다는 장점이 있다. 하지만 의사라 하더라도 전문적인 영상 판독 훈련을 받지 않은 경우 높은 진단 정확도를 기대하기 어렵고, 영상의학 전문의라도 개인 역량에 의존할 수밖에 없는 분야가 영상 판독 분야다. 이런 문제를 극복하기 위해 해상도를 높이고, 조영제를 활용하거나 입체영상을 만드는 등 많은 기술적 발전이 이뤄져 왔고, 이제는 인공지능이 영상 판독의 정확성을 높이는 데 기여하고 있다.
인공지능이 영상 판독에 적용된 사례로 폐를 촬영한 X-레이 영상에 인공지능이 폐 질환이 의심되는 부위를 표시해주는 솔루션을 개발한 루닛이 있다. 이 솔루션은 인공지능이 폐 질환의 유무와 질환의 종류를 판별하는 것이 아니라 의사가 영상 판독에 도움을 받을 수 있도록 보조하는 방식을 사용하고 있다. 의사와 인공지능이 협력할 때 의사나 인공지능이 단독으로 판독할 때보다 정확도와 신뢰성이 높다는 것을 확인했기 때문이다. 이외에도 의료 사고에서의 책임 문제, 의료비 청구를 위한 비용의 문제 등도 고려된 것으로 알려졌다. 이외에도 뷰노, 제이엘케이인스펙션 등도 영상 판독과 관련된 솔루션을 개발하여 상용화에 박차를 가하고 있다.
R&D of New Drugs using AI
신약 연구 개발에서의 인공지능 활용
신약 개발로 창출되는 부가가치는 매우 크다. 많은 제약‧바이오 기업이 주목받고 투자를 받는 것도 미래 가치에 대한 기대감 때문이다. 하지만 신약을 개발하는 과정은 큰 비용과 긴 시간이 필요하다. 일반적으로 신약 개발은 후보물질 발굴, 전임상, 임상, 허가 및 시판의 과정을 거치며, 전통적인 방법으로 새로운 물질의 도출에서 최종 상용화까지는 약 15년이 걸린다고 한다. 그런데도 상용화에 성공하는 경우는 1%도 되지 않는다. 제약회사는 신기술을 적용해 시간과 비용을 줄이고자 하며, 최근 급속히 발전한 인공지능 기술도 제약 분야에 도입된 중요한 신기술 가운데 하나다.
신약 개발에서 인공지능이 가장 성공적으로 활용되는 단계는 후보물질 발견 단계다. 후보물질 발견 단계에서는 신약 개발 대상 질병을 선정하고 관련 연구 논문 등의 자료를 탐색해 치료제의 후보 물질을 선정한다. 이때 탐색의 대상이 되는 자료는 논문, 보고서, 생물학 정보 데이터 등으로 종류도 다양하고 그 분량도 지수적으로 증가하고 있다. 이렇게 많은 자료에서 수백 개에 이르는 요소들을 비교 검토해 후보물질을 발견하는데, 전 과정에 5년 정도의 시간이 걸린다. 인공지능은 자료 검토를 통한 화합물 탐색, 탐색 된 화합물 구조 정보와 단백질 결합능력의 계산 등을 통해 후보물질 발견 단계에서 소요 시간과 비용을 크게 줄여준다.
[알파폴드: AI사용 신약후보물질 발견 (딥마인드)]
지난해 12월 딥마인드가 발표한 새로운 인공지능 ‘알파폴드’도 신약 후보물질 발견에 크게 기여할 것으로 기대되는 성과 가운데 하나다. 당시 딥마인드는 알파폴드가 단백질 구조 예측에서 실제 단백질 구조와 90% 이상 일치하는 정확도를 보였다고 밝혔다. 단백질은 다양한 아미노산이 사슬처럼 얽혀져 3차원의 입체 구조를 이루고 있다. 단백질 구조를 알기 위해서는 구성 아미노산을 파악하고 개별 아미노산 간의 상호작용을 계산하는 고도의 물리적, 생화학적 연구가 필요하다. 알파폴드는 복잡한 연구 과정 없이 과거 데이터를 바탕으로 높은 정확도로 계산하는 데 성공한 것이다. 이 기술을 활용하면 치료 대상 질병과 관련된 단백질 구조를 과거보다 빠르고 저렴하게 분석할 수 있게 되고, 신약후보물질이 해당 단백질에 효과적으로 적용될 수 있는지 파악하는 데도 도움이 된다.
AI for Clinic & Patient Care
진료와 환자 관리를 위한 인공지능
COVID-19 상황으로 대변 접촉이 제한되는 상황은 의료 현장에도 적용되고 있다. 이런 상황에서 대안으로 주목받는 영역이 원격 상담, 원격 진료, 원격 모니터링 등 비대면 의료이다. 병원 방문 전 단계에서 환자에 대한 상담과 관리, 대면 진료가 어려운 상황에서의 환자의 진료, 환자 관리를 위한 지속적인 모니터링 등 각 단계에서 환자와 의료진 간의 접촉을 줄이는 한편, 효과적으로 의료 행위를 할 수 있는 다양한 솔루션이 개발되고 있다. 이런 과정에 의료진을 보조하거나, 의료진의 개입을 줄이는 방향으로 인공지능을 접목하려는 다양한 시도가 이뤄지고 있다.
원격 상담과 원격 진료에서 인공지능은 챗봇과 같은 형태로 적용된다. 의료진과의 원격 대면에 앞서 챗봇 형태의 서비스를 통해 자유롭게 대화하는 방식이다. 상담이나 진료를 위한 인공지능 챗봇은 환자에게 증상이나 현재 상태를 묻고 이를 기록하여 이후 의료진이 환자와 대화할 때 기초 데이터로 활용할 수 있도록 돕는다. 특히 딥러닝 기반의 대화 엔진은 다양한 표현으로 이뤄지는 환자의 대화 내용을 맥락에 따라 정확하게 인식하는 데 도움을 준다. 기존의 시나리오 기반 챗봇은 정의된 시나리오에서 벗어나는 대화를 할 수 없는 한계가 있다. 또 인공지능을 적용한 경우라도 기술 수준이 낮을 때는 사용하는 단어나 구문이 달라질 경우 같은 의미라도 다르게 해석하여 잘못된 대답을 하게 된다. 최근 지속해서 발전하고 있는 딥러닝 기반의 자연어 처리 인공지능 엔진은 이런 한계를 극복하고 환자의 말을 정확히 알아듣고 의료진에게 실질적인 도움을 제공하는 방식으로 적용되고 있다.
원격 모니터링에 적용된 인공지능은 환자에게서 나오는 다양한 생체 신호를 분석하여 환자의 상태 이상을 미리 확인하고 환자나 의료진에게 경고를 하는 방식으로 작동한다. 환자가 스마트 워치나 스마트 링 등 웨어러블 디바이스를 착용하고 다양한 생체 신호를 수집하여 이를 인공지능을 통해 분석하는 방식이다. 사실 이런 방식은 원격 모니터링 상황에서뿐만 아니라 병원 내에서도 중환자실 등에서 환자의 다양한 생체 신호를 확인하고 의료진에게 정보를 제공하는 방식으로 사용되고 있다. 예를 들어, 가우스 서지컬(Gauss Surgical)은 컴퓨터 비전을 사용하여 출산 중 혈액 손실을 모니터링한다. 출산 중 출혈은 산모가 사망하는 중요한 원인이지만 예방할 수 있다. 가우스 서지컬은 병원 적용 테스트에서 출산 시 출혈량을 의료진의 시각적 확인해 비해 4배 높은 정확도로 확인했다고 밝히기도 했다. 또 메디컬 인포메틱스(Medical Informatics)의 경우 머신러닝 기술을 적용해 환자의 바이탈 신호, 인공호흡기, EMR 데이터 등을 수집 및 합성하여 병상에 있는 환자의 상태를 모니터링하는 솔루션을 공급하고 있다.
AI to streamline Healthcare Processes
의료 프로세스 효율화를 위한 인공지능
의료 행위는 단지 환자의 진단, 진료, 치료에만 국한되지 않는다. 병원 방문 전에 상담과 예약이 이뤄진다. 이를 위해 콜센터가 운영된다. 입원 환자에게는 기본적인 의식주가 제공되며, 이를 위한 보조인력이 존재한다. 입원 중에 환자는 다양한 처치나 치료, 검사를 받게 되고 이 과정에 다양한 간호간병서비스도 제공된다. 이런 부가 활동은 간호사를 중심으로 다양한 보조 인력들이 제공하고 있다.
문제는 이 과정에 간호사의 업무 부담이 높다는 점이다. 특히 입원 병동 간호사의 경우 환자 관리의 연속성 유지를 위해 효율적인 기록 관리와 업무 인계가 중요하지만 위급한 환자를 돌보는 경우 기록이나 업무 인계 시점을 놓쳐 초과 근무가 수시로 발생한다. 또한, 환자 관리 이외의 부가 업무 등의 발생으로 인해 업무 효율이 떨어지고 이는 다시 초과 근무의 원인이 된다.
병원 업무는 인력 집약도가 높으며 업무 부담을 낮추기 위해서는 추가 인력의 고용이 필요하지만, 현재의 의료 비용 구조는 높은 인건비를 감당하기 어려운 상황이다. 이런 이유에서 간호 업무를 중심으로 인공지능을 도입해 간호 업무의 효율성을 높이고 의료 서비스의 질을 재고하려는 노력이 이뤄지고 있다. 포티투마루는 용인세브란스, 국립암센터 등과 함께 자연어 처리에 특화된 인공지능을 도입해 간호 업무를 효율화하고 있다.
먼저, 콜센터나 키오스크 등에 대화형 인공지능을 적용해 초진환자를 위한 문진 서비스를 제공한다. 초진 환자의 경우 병력, 진료받고자 하는 증상, 현재 상태 등에 대한 문진이 필요하며 주로 간호사나 수련의가 해당 업무를 담당한다. 이런 초진 환자 문진의 경우 확인할 주요 사항이 정형화되어 있으며, 질의에 대한 환자의 대답을 정확하게 이해하고 처리하는 것이 서비스의 핵심이다. 의료 현장에서의 대화 데이터에 특화된 자연어 처리 엔진은 높은 정확도로 환자의 답변을 처리할 수 있다.
입원 병동에서 간호사 업무 보조를 위한 인공지능 서비스가 제공된다. 입원 병동에서 간호사는 일종의 민원센터와 같은 역할을 한다. 통증 등으로 몸이 불편해지거나, 진료나 검사를 위해 시간에 맞춰 이동해야 하거나, 긴급한 상태 변화에 담당 의사를 호출하는 등의 환자 관리부터 환자복을 바꿔입거나, 식사에 변동 사항을 발견하는 등의 환자 생활 관리에 대한 부분까지 1차적으로 간호사의 손을 거치게 된다. 이 가운데 환자의 이동, 담당 의사의 호출, 환자복이나 식사에 대한 내용은 사실상 간호사는 말을 전달하는 역할에 그친다. 이런 부분은 인공지능 스피커의 에이전트와 같은 간호 보조 업무에 특화된 인공지능 어시스턴트 기능으로 간호사의 업무를 대신할 수 있다. 그만큼 간호사는 환자 관리 업무에 집중할 수 있게 된다.
Outro
마치며
이 글에서는 건강과 관련된 활동에서 인공지능의 역할이 가시적으로 나타나고 있는 분야를 우선적으로 보여주고자 했다. ‘건강과 관련된 활동’은 직접적인 의료 행위, 의료를 위한 보조 활동, 사전/사후 관리, 치료와 직간접적 관련이 있는 분야까지 비교적 넓게 정의했으며, 그만큼 인공지능이 다양한 분야에서 상용화 단계까지 깊숙이 들어와 있음을 확인할 수 있었다. 앞으로의 과제는 3가지로 정리할 수 있다. 우선 현재 시도되고 있는 인공지능의 효용을 더욱 높이는 것이다. 상용화에 이른 예도 있지만, 아직 ‘즉시전력감’이라고 하기에는 부족한 부분도 있기 때문이다. 두 번째로 현재의 성공적인 적용사례를 바탕으로 인공지능의 적용 범위를 더 넓혀가는 것이다. 이를 위해서는 더 많은 데이터를 축적하면서도 민감한 의료 정보에 대한 프라이버시 침해 문제도 해결해야 하는 과제가 존재한다. 마지막으로 디지털 헬스케어 분야에서 인공지능이 살아남기 위해서는 확실한 수익을 만들어내는 것이 필요하다. 첫 번째 문제와도 연결되는 것으로 효용을 더욱 높이고 과금의 정당성을 확보해야만 지속할 수 있는 인공지능이 가능할 것이다.